JUSTYNA TOTOŃ-ŻURAŃSKA

Badania nad możliwością farmakologicznego hamowania progresji miażdżycy, poprzez regulację funkcji receptora dla angiotensyny (1-7)

Praca doktorska

Promotor: Dr hab. med. Jacek Jawień
Praca wykonana została w Katedrze Farmakologii UJ CM
Kierownik Katedry: Prof. dr hab. med. Ryszard Korbut

Kraków 2011

Dziękuję wszystkim Koleżankom i Kolegom za stworzenie milej i pełnej inspiracji naukowej atmosfery w Katedrze Farmakologii.

Na koniec, pragnę także podziękować mojemu Mężowi oraz Rodcom – za wyrozumiałość i cierpliwość podczas długotrwałego procesu tworzenia doktoratu.
„Altera manu fert lapidem, panem ostentat altera”

„Jedną ręką trzyma kamień, drugą pokazuje chleb”

sentencja rzymska
SPIS TREŚCI

Spis skrótów ... str. 5
I. Wstęp ... str. 7
 I.1 Miażdżycy ... str. 7
 I.2 Układ renina-angiotensyna-aldosteron str. 10
 I.3 Rola angiotensyny II .. str. 12
 I.4 Leki działające na układ RAA str. 14
 I.5 Nowe spojrzenie na oś RAA str. 15
 I.6 Rys historyczny odkrywania komponent osi RAA i ACEI str. 20
 I.7 Najnowszy model eksperymentalny miażdżycy str. 20
II. Cele pracy ... str. 24
III. Materiał i metody .. str. 25
 III.1 Zwierzęta i leki .. str. 25
 III.2 Pobieranie narzędzi .. str. 26
 III.3 Oznaczanie wielkości miażdżycy str. 30
 III.4 Badania immunohistochemiczne str. 39
 III.5 Badania biochemiczne .. str. 40
 III.6 Lipidy osocza .. str. 40
 III.7 Badanie rozkurczu naczyń str. 40
 III.8 Analiza statystyczna ... str. 42
IV. Wyniki .. str. 43
 IV.1 Lipidy ... str. 43
 IV.2 Masa myszy .. str. 43
 IV.3 Wielkość miażdżycy .. str. 44
 IV.4 Struktura blaszki i jej stabilność str. 47
 IV.5 Osocze markery zapalenia str. 49
 IV.6 Rozkurcz naczyń .. str. 52
V. Dyskusja ... str. 53
VI. Wnioski .. str. 59
VII. Streszczenie .. str. 60
VIII. Summary ... str. 62
IX. Piśmiennictwo ... str. 64
X. Spis tabel .. str. 82
XI. Spis rycin .. str. 83
SPIS SKRÓTÓW

ACE (angiotensin converting enzyme) – konwertaza angiotensyny
ACEI (angiotensin converting enzyme inhibitor) – inhibiter konwertazy angiotensyny
apoE (apolipoprotein E) – apolipoproteina E
ARB (angiotensin receptor blocker) – bloker receptora angiotensynowego
ELISA (Enzyme-Linked Immunosorbent Assay) - test immunoenzymatyczny
eNOS (endothelial nitric oxide synthase) – śródblonkowa syntaza tlenku azotu
gene KO (knockout) – wyłączenie genu
HDL (high density lipoprotein) - lipoproteina o wysokiej gęstości
HSP (heat shock protein) – białko szoku cieplnego
IDL (intermediate density lipoprotein) – lipoproteina o pośredniej gęstości
IFN-γ (interferon gamma) – interferon gamma
IL (interleukin) – interleukina
IMA (internal mammary artery) - tętnica piersiowa wewnętrzna
LDL (low density lipoprotein) – lipoproteina o malej gęstości
MCP-1 (macrophage chemotactic protein–1) – białko chemotaktyczne dla makrofagów
NO (nitric oxide) – tlenek azotu
OCT (Optimal Cutting Temperature) – żel mrożeniowy
ORO (oil Red-O) – czerwień oleista
oxLDL (oxidized LDL) – utlenowana cząsteczka LDL
PAI-1 (plasminogen activator inhibitor-1) - inhibiter aktywatora plazminogenu 1
PBS (phosphate saline buffer) – bufor fosforanowy
RAA (renin angiotensin aldosterone) – oś renina–angiotensyna-aldosteron
SAA (serum amyloid A) – surowiczy amyloid A
SMA (smooth muscle actin) – α-aktyna mięśniówki gładkiej

TF (tissue factor) - czynnik tkankowy

TGF-β (transforming growth factor beta) – transformujący czynnik wzrostu beta

Th lymphocyte (T helper) – limfocyt T pomocniczy

TLR (Toll-like receptor) - receptor Toll podobny

TNF-α (tumor necrosis factor alpha) – czynnik martwicy nowotworów alfa

Treg (regulatory T cells) – limfocyt T regulatorowy (dawniej zwany supresorowym)

sVCAM-1 (vascular cell adhesion molecule-1) – rozpuszczalna w osoczu adhezyna komórek naczyń typu 1

VLDL (very low density lipoprotein) - lipoproteina o bardzo małej gęstości
I. WSTĘP

I.1 Miażdżyca

Miażdżyca tętnic jest jedną z głównych przyczyn śmiertelności w krajach rozwiniętych [112, 156, 157]. To przewlekła choroba tętnic, cechująca się tworzeniem charakterystycznych zmian w ścianie naczyń, z naciekami zapalnymi, gromadzeniem lipidów i włóknieniem. Aktualna wiedza o patofizjologii miażdżycy pochodzi głównie z badań prowadzonych na modelach zwierzęcych, zwłaszcza na myszach wrażliwych na rozwój choroby, wskutek pozbawienia ich genów dla apolipoproteiny E lub receptora LDL [197].

Wiek XX był erą pojmowania miażdżycy jako wyłącznie odkładania się cholesterolu i lipoprotein w ścianie naczyń, z kulminacją tego poglądu w postaci serii przeprowadzonych na wielką skalę badań klinicznych, ukazujących jednoznacznie, że skorygowanie hipercholesterolemii zmniejszało znacząco zachorowalność i śmiertelność w miażdżycy tętnic wieńcowych [53, 144, 173, 196].

Niemal do końca lat 90. zakładano, że miażdżyca rozwija się jako przewlekła odpowiedź na uraz, który powoduje utratę komórek śródbłonka [152]. Uznawano ją przede wszystkim za chorobę zwyrodnieniową [153-155]. Około 20 lat temu badacze zaczęli jednak w coraz większym stopniu skupiać się na innym, dotychczas nieuważlomianym, aspekcie patogenetycznym miażdżycy — procesie zapalnym.

W 1986 roku Hansson i wsp. przy użyciu przeciwial monoklonalnych odkryli, że małe komórki o okrągłym jądrze, obecne w blaszce miażdżycowej, które dotąd określano jako „małe monocyty”, są limfocytami T [94]. Kilka lat później stwierdzili oni, że limfocyty te jako antygen rozpoznają utlenione cząsteczki lipoprotein o małej gęstości (LDL) — oxLDL [185]. Ponadto w wielu doniesieniach raportowano o
istnieniu korelacji pomiędzy miażdżycą a obecnością co najmniej 2 typów mikroorganizmów zakaźnych: *Chlamydia pneumoniae* i *Herpes simplex virus* [191].

Zacząło się więc zastanawiać, czy proces zapalny nie bierze udziału w miażdżycy. Te rozważania początkowo jednak przyjmowano z dużym sceptycyzmem. Brakowało bowiem jednoznacznego dowodu na istotny wpływ zapalenia na rozwój miażdżycy. Uzyskano go dzięki nowemu zwierzęcemu modelowi miażdżycy — myszy, u której zastosowano technikę celowania genowego (*gene-targeting*), za której wynalezienie Mario R. Capecchi (Stany Zjednoczone), Martin J. Evans (Wielka Brytania) oraz Oliver Smithies (Stany Zjednoczone) otrzymali w 2007 roku Nagrodę Nobla w dziedzinie medycyny.

Dlatego też w 1999 roku Russell Ross ogłosił, że miażdżyca jest chorobą zapalną [156, 157]. Zapalenie występuje jako odpowiedź na czynnik destabilizujący miejscową homeostazę. Czynniki powodującymi aktywację makrofagów w ścianie tętnic poprzez receptor Toll-podobny (TLR) są: utlenione cząsteczki lipoprotein o małej gęstości LDL (oxLDL), białko szoku cieplnego 60 (HSP60) oraz endotoksyny bakteryjne [76].

Pierwszym etapem rozwoju miażdżyca jest dysfunkcja środübłonka. Dotyczy to przede wszystkim regionów rozgałęzień tętniczych, gdzie przepływ krwi często nie ma charakteru laminarnego. Stąd predylekcja do rozwoju miażdżycy w tych miejscach. Tu następuje odkładanie się cząsteczek LDL w przestrzeni podśródübłonkowej. Akumulacja LDL jest zwiększona, gdy stężenie LDL w surowicy krwi jest zwiększone. Cząsteczka LDL dyfunduje pasywnie i jej odkładanie się w ścianie naczynia wydaje się wynikać z interakcji pomiędzy apolipoproteiną B cząsteczki LDL a proteoglikanami macierzy [13].
Udowodniono, że niezmienione cząsteczki LDL są zbyt wolno „pobierane” przez makrofagi, aby spowodować ich przekształcenie w komórki piankowate. Zasugerowano więc, że cząsteczka LDL zostaje „zmodyfikowana” w ścianie naczynia. Najbardziej znaczącą modyfikacją jest utlenienie (oksydacja) lipidów [65]. W jej wyniku powstaje tak zwana „minimalnie utleniona” cząsteczka LDL. W wyniku powstania tych cząstek jako „obcych” dla organizmu następuje reakcja zapalna [64, 137]. Zanim „minimalnie utleniona” cząsteczka LDL zostanie sfagocytowana przez makrofagi, musi ulec dalszej modyfikacji do „wysoce utlenionej” LDL. Szybki wychwyt tak zmienionych cząstek LDL przez makrofagi zachodzi poprzez receptory zmiatające [186]. Następnym etapem jest „prezentacja antygenu” limfocytom T przez komórki dendrytyczne. Antygenem tym może być fragment „strawionej” przez makrofag, utlenionej lipoproteiny LDL, białko szoku cieplnego 60 (HSP60), β₂ glikoproteina I lub fragmenty antygenów bakteryjnych [73].

W wyniku oddziaływania tych komórek następuje odpowiedź immunologiczna typu T helper 1 (komórkowa) lub typu T helper 2 (humoralna). Obecnie uważa się, że odpowiedź typu Th₁ i jej mediatory: interferon gamma (IFN-γ), czynnik martwicy nowotworów (TNF-α), interleukina 1, interleukina 12 oraz interleukina 18 działają przyspieszając na rozwój miażdżycy, podczas gdy odpowiedź typu limfocytów Treg (dawniej zwanych limfocytami T supresorowymi) i jej mediatory: transformujący czynnik wzrostu beta (TGF-β) oraz interleukina 10 hamują rozwój miażdżycy [43].

Stabilna blaszka miażdżykowa najczęściej posiada względnie grubą pokrywę włóknistą chroniącą jądro lipidowe przed zetknięciem z krwią. W niestabilnej blaszce obserwuje się duże jądro lipidowe ze względnie cienką pokrywą włóknistą. W obrębie tak zmienionej blaszki czynniki prozapalne produkowane przez limfocyty T (jak IFN-γ) wydają się odgrywać kluczową rolę, z jednej strony zmniejszając produkcję przez
mięśniówkę gładką macierzy zewnątrzkomórkowej, z drugiej zaś — zwiększając produkcję metaloproteinaz przez makrofagi [177].

Miażdżyca jest zatem przewlekłą chorobą zapalną, w większości przypadków zapoczątkowaną i rozwijającą pod wpływem hipercholesterolemii. Hipercholesterolemię oraz zapalenie określono jako „współniki przestępstwa” (‘partners of crime’) [183]. Koncepcja miażdżycy jako zapalenia ukształtowała się dopiero w ostatnich latach, lecz obecnie jej wartość jest niekwestionowana, co wiąże się z określonymi konsekwencjami terapeutycznymi [88].

I.2 Układ renina – angiotensyna – aldosteron

System renina-angiotensyna-aldosteron (RAA) odgrywa kluczową rolę w regulacji układu sercowo-naczyniowego. Peptydy angiotensynowe wywierają potężny wpływ na układ krążenia i gospodarkę wodno-elektrolitową zarówno bezpośrednio, jak i na drodze regulacji nerwowej oraz za pośrednictwem aldosteronu. Modulacja systemu RAA jest podstawową strategią leczenia nadciśnienia tętniczego oraz niewydolności serca.

W „klasycznym” opisie systemu RAA, pod wpływem spadku ciśnienia tętniczego krwi, zmniejszenia stężenia jonów sodu w osoczu lub pobudzenia receptorów β-adrenergicznych - z aparatu przykłębushkowego nerek uwalniany jest enzym proteolityczny renina (ryc. 1). Działa on na α-globulinę osocza – angiotensynogen, odszczepiając od niego dekapeptyd angiotensynę I (AT I) (ryc. 2). Ta z kolei pod wpływem enzymu konwertazy angiotensyny (angiotensin converting enzyme - ACE) przekształcona jest do oktapeptydu - angiotensyny II (AT II) (ryc. 3) - silnej substancji bioaktywnej. ACE jest karboksydazą dipeptydową i spełnia równocześnie rolę kininazy II, która rozkłada m.in. bradykininę do nieaktywnych peptydów.
Ryc. 1. „Klasyczne” ujęcie systemu RAA

Ryc. 2. Angiotensyna I (H$_2$N-Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu-COOH).
I.3 Rola angiotensyny II

Angiotensyna II powoduje:

1. bezpośredni silny skurcz naczyń krwionośnych (40-krotnie silniejszy niż po noradrenalinie) - poprzez aktywację receptora AT₁, który m.in. przez białko G_q aktywuje fosfolipazę C
2. wzrost uwalniania noradrenaliny z synapsy sympatycznej
3. wzrost produkcji aldosteronu w korze nadnerczy
4. wzrost wydzielania hormonu antydiuretycznego (wazopresyny) z przysadki mózgowej
5. pobudzenie ośrodka pragnienia
6. *remodeling* mięśnia sercowego i naczyń krwionośnych, polegający na rozroście komórek. AT II jest bowiem jednym z najważniejszych peptydowych czynników wzrostu.
7. działanie arytmogenne
8. wydzielanie reniny
9. obkurczenie mięśniówki gładkiej naczyń doprowadzających krew do kłębuszków nerkowych, zmniejszając w ten sposób przesaczanie kłębuszkowe
10. pobudzenie stanu zapalnego

11. działanie promiażdżycowe

Istnieją dwa typy receptorów dla AT II:

AT₁ – „klasyczny”, powodujący poniżej wymienione działania AT II. Mechanizm działania: między innymi przez białko G₉ aktywuje fosfolipazę C.

AT₂ - rzadziej występujący, którego pobudzenie wywołuje efekt hipotensyjny, natriuretyczny i antyproliferacyjny (a więc przeciwstawny do działania receptora **AT₁**). Aktywacja receptorów **AT₂** prowadzi do zwiększonego wytwarzania tlenku azotu, prostacykliny i bradykininy, otwarcia kanałów potasowych i hamowania aktywności kanałów wapniowych T [102].

AT II posiada szereg potencjalnych mechanizmów, poprzez które zwiększa proces aterogenezy [40, 76]. Po pierwsze, może ona niebezpośrednio wpływać na powstawanie miaźdzycy poprzez efekty hemodynamiczne, wynikające ze zwiększonego ciśnienia tętniczego krwi. Po drugie, wykazano, że AT II nasila szereg zjawisk, bezpośrednio prowadzących do rozwoju miaźdzycy: stymuluje rekrutację monocytów, aktywację makrofagów, nasila stres oksydacyjny. Zjawiska te pojawiają się niezależnie od wzrostu ciśnienia tętniczego krwi [126].

Angiotensyna II wykazuje silne działanie promiażdżycowe, związane także ze stymulacją wytwarzania białka VCAM-1 (*vascular cell adhesion molecule*-1) – adhezyyny komórek naczyń, z aktywacją błonowego enzymu NADPH oksydazy naczyń, z aktywacją komórkowych białek regulujących procesy proliferacyjne, z działaniem prozakrzepowym [wzrost uwalniania inhibitoryka aktywatora plazminogenu 1 (*plasminogen activator inhibitor*-1, PAI-1) oraz czynnika tkankowego (*tissue factor* - TF)], z hamowaniem śródblonkowej syntazy tlenku azotu (*endothelial nitric oxide*...
synthase - eNOS), ze zwiększeniem oksydatywnej modyfikacji LDL, wreszcie ze zwiększeniem ekspresji interleukiny-6 i indukowaniem stanu zapalnego naczyń.

I.4 Leki działające na układ RAA

Aktywacja osi renina – angiotensyna II – aldosteron jest podstawą patofizjologii wielu chorób układu sercowo-naczyniowego (nadciśnienie tętnicze, niewydolność serca, remodeling serca po zawale, niestabilna blaszka miażdżycowa) [15, 28].

Blokowanie powstawania i działania AT II jest ważnym celem terapeutycznym w leczeniu chorób sercowo-naczyniowych. Dlatego też w ostatnich dekadach włożono wiele wysiłku w stworzenie leków hamujących oś renina – AT II – aldosteron. Uzyskano zatem blokery receptora aldosteronowego, inhibitory konwertazy angiotensyny (angiotensin converting enzyme inhibitors – ACEI), następnie blokery receptora angiotensynowego typu AT1 (angiotensin receptor blockers – ARB)

Niedawno zaś do kliniki trafił pierwszy inhibitor reniny – aliskiren [179].

Inhibitory konwertazy angiotensyny to ważna grupa leków. Prototypem był teprotyd, wyizolowany w latach 70-tych z jadu żmii brazylijskiej Bothrops jararaca.

Można podzielić ACEI ze względu na powinowactwo do krążącej i tkankowej frakcji ACE na: inhibitory „osoczowe” - hamujące głównie krążącą frakcję ACE, takie jak: kaptopryl, enalapryl, cilazapryl, benazepryl oraz na inhibitory „tkankowe” – leki wysoce lipofilne, obdarzone zdolnością penetracji tkankowej i w wysokim stopniu hamujące tkankowe układy ACE: chinapryl, fosynopryl, peryndopryl, ramipryl i trandolapryl.

Zastosowanie kliniczne ACEI to: nadciśnienie tętnicze, przewlekła niewydolność krążenia, leczenie zawału mięśnia serca, nefropatia cukrzycowa oraz
leczenie stabilnej choroby wieńcowej.

Peryndopryl to kwas (2S,3aS,7aS)-1-[(2S)-2-{{(2S)-1-etoksy-1-oksopentan-2-ylo}amino}propanoylo]-2,3,3a,4,5,6,7a-oktahydroindolo-2-karboksylowy (ryc. 4).

![Chemical structure of peryndopryl](image)

Ryc. 4. Budowa chemiczna peryndoprylu.

1.5 Nowe spojrzenie na oś RAA

Stwierdzono bowiem, że oprócz AT II, z AT I powstają także inne peptydy, jak nonapeptyd AT-(1-9) i heptapeptyd AT-(1-7) (ryc. 6). Ta ostatnia posiada biologiczne działanie przeciwnie AT II (ryc. 7).

Odkryto również enzym ACE2 (homolog ACE), który w odróżnieniu od ACE odszczepia tylko jeden aminokwas z peptydów. Poprzez działanie tego właśnie enzymu powstaje AT-(1-7) [27] (ryc. 5).

Ryc. 7. Działanie AT-(1-7) na narządy.

Angiotensyna (1-7) była przez długi czas uważana za nieaktywny produkt osi RAA [68]. Ta koncepcja zaczęła się zmieniać wraz z badaniami Schiavone i wsp. [174], w których wykazano, że AT-(1-7) jest tak samo zdolna do uwalniania wazopresyny z neuronów biegnących do tylnego płata przysadki mózgowej *in vitro*, oraz po badaniach Campagnole-Santos i wsp. [19], opisujących spadek ciśnienia tętniczego krwi po mikroinjekcji bardzo niskich dawek (femtomoli) AT-(1-7) do jądra pasma samotnego (*nucleus tractus solitarii*).

Angiotensyna (1-7) jest zatem aktywnym peptydem osi RAA [69, 166, 167]. Przeciwiała ona wazokonstukcji poprzez uwalnianie tlenku azotu i prostacykliny [9]. Ponadto hamuje mitogene, arytmogene i prozakrzepowe działanie AT II [104, 105]. Nasila natriurezę i diurezę, działa przeciwnie do retencji sodu i wody, powodowanej przez AT II. Wykazano, że aktywności wazodylatacyjne oraz diuretyczne AT-(1-7) są...
mediowane przez Mas – receptor związany z białkiem G [164, 170]. AT-(1-7) zwiększa również aktywność bradykininy (a poprzez nią syntezę śródblonkową tlenku azotu) i antagonizuje hipertroficzne działanie AT II [158].

W 2002 roku zsyntetyzowano związek, będący niepeptydowym agonistą receptora Mas dla angiotensyny (1-7): AVE 0991 [108, 139, 165, 206]. Jest to 5-formylo-4-metoksy-2-fenylo-1-[[4-[2-etylo-aminokarbonylsulfonamido-5-izobutylo-3-tiennylo]-fenylo]-metylo]-imidazol (ryc. 8).

Ryc. 8. Budowa chemiczna AVE 0991.

W latach 90. stworzono także peptydowego antagonistę AT-(1-7): związek A-779 [(D-Alanina7)-Angiotensyna (1-7)] [95, 163, 167, 198] (ryc. 9).
Obojętna endopeptydaza (*neutral endopeptidase* – NEP) zaś jest głównym enzymem przekształcającym AT I oraz AT-(1-9) w AT-(1-7) (ryc. 5) [119, 205]. Dlatego hamowanie tego enzymu blokuje powstawanie AT-(1-7) [32].

I.6. Rys historyczny odkrywania osi RAA i ACEI

Renina została odkryta w roku 1898 przez Roberta Tigerstedta - profesora fizjologii w Instytucie Karolinska w Sztokholmie [7]. W 1934 roku Harry Goldblatt wyindukował eksperymentalne naciskanie u psa, co w rezultacie zwiększył tętnicę nerkową – potwierdzając tym samym rolę nerek w zapoczątkowaniu pobudzenia osi renina – angiotensyna – aldosteron (RAA). Angiotensyna II (AT II) została po raz pierwszy wyizolowana w latach 30., przez dwie niezależne od siebie grupy: pod kierownictwem Irvina Page’a w laboratorium firmy Eli Lilly w Indianapolis (USA) oraz w kierowaną przez Bernarda Houssay’a w Buenos Aires, pod odpowiednimi nazwami („angiotonina” oraz „hipertensyna”). Ostatecznie oktapeptyd ten został zsyntetyzowany w 1957 roku jednocześnie przez dwie grupy: pod dalszym kierownictwem Irvina Page’a – pracującego tym razem w Cleveland (USA) oraz przez Roberta Schwytzera i wsp. w laboratorium firmy Ciba w Bazylei (Szwajcaria). Zaś kluczowa rola enzymu konwertującego angiotensynę (ACE) w obrębie układu RAA została opisana po raz pierwszy w 1956 roku przez L.T. Skeggsa i wsp. [178].

Pierwsze substancje blokujące układ RAA odkrył w 1965 roku uczeń odkrywcy bradykininy, profesora Rocha e Silva - Sergio Ferreira, pracując w Londynie w laboratorium Sir Johna Vane’a. Wyosobnił on czynnik zwany bradykinin potentiating factor (BPF). Była to grupa peptydów wyodrębnionych z jadu żmii brazylijskiej Bothrops jararaca, blokujących in vitro rozkład bradykininy, a równocześnie przekształcające angiotensynę I do II dzięki zahamowaniu kininazy 2, zwanej obecnie konwertazą angiotensyny (angiotensin converting enzyme – ACE).

Era leków hamujących ACE zaczęła się w roku 1974, w którym zsyntetyzowano i po raz pierwszy zastosowano w leczeniu chorych z naciskaniem tętniczym, dożylny inhibitor ACE, nonapeptyd – teprotyd. Pierwszym doustnym lekiem z tej grupy był kaptopryl.

I.7 Najnowszy model eksperymentalny miażdżycy

Od roku 1992 mysz stała się znakomitym obiektem badań nad miażdżycą, zastępując dotychczasowe modele zwierzęce [42, 86, 122, 132, 133, 142, 149]. Wówczas to bowiem zostały stworzone, prawie równocześnie w dwóch laboratoriach w Stanach Zjednoczonych, myszy z wyłączonym genem dla apolipoproteiny E [apolipoprotein E (apoE) – knockout] [138, 140]. Myszy te zostały wkrótce określone jako „wiarygodny i użyteczny, najlepszy obecnie model zwierzęcy miażdżycy” [120].
„Gene targeting” (celowanie genowe) – technika, dzięki której powstały wyżej wymienione myszy - polega na homologicznej wymianie genów. W procesie tworzenia myszy apoE knockout (inne nazwy angielskie: apoE null lub apoE deficient), następuje zastąpienie prawidłowego genu kodującego apolipoproteinę E przez gen zmutowany, nie produkujący apolipoproteiny E. Taka mysz, w terminologii polskiej, posiada znokautowany, wyłączony, zerowy lub zinaktywowany gen kodujący apolipoproteinę E. W dalszym części pracy będziemy posługiwać się dla ułatwienia najpopularniejszą nazwą: myszy apoE-knockout (apoE-KO).

Apolipoproteina E (apoE) jest ligandem, odpowiedzialnym za wychwyt z krążenia lipoprotein o bardzo małej gęstości (VLDL – very low density lipoproteins), lipoprotein o pośredniej gęstości (IDL – intermediate density lipoproteins), lipoprotein o dużej gęstości (HDL - high density lipoproteins) oraz remnants chylomikronów [14, 47, 115, 121, 187, 207]. ApoE jest syntetyzowana głównie w hepatocytach, ale jest również wytwarzana w innych komórkach – w tym w makrofagach, komórkach nerwowych i glejowych. Jest obecna w chylomikronach, IDL, VLDL i HDL i pośredniczy w wychwycie wymienionych lipoprotein w wątrobie, zarówno przez receptor LDL, jak i przez związane z nim białko LRP (LDL receptor – related protein).

Wyłączenie genu dla apoE spowodowało powstanie myszy o fenotypie o całkowitym braku ekspresji apoE, jednakże z zachowaniem płodności i żywotności [14].

Myszy z wyłączonym genem dla apolipoproteinu E, w przeciwieństwie do wszystkich innych modeli zwierzęcych, rozwijają miażdżycę spontanicznie, bez konieczności stosowania diety wysokocholesterolowej [74, 75, 81, 135]. Jednakże w przeciwieństwie do człowieka, najwcześniejsze i najbardziej zaawansowane zmiany występują w zatokach wieńcowych aorty, należących do tzw. „korzenia aorty” („aortic root”), czyli części aorty znajdującej się jeszcze w obrębie mięśnia serca.

Większość pozostałych modeli miażdżyć rozwija tylko morfologicznie wczesne zmiany [nacieki tłuszczowe ("fatty streaks"), bez złogów lipidowych pozakomórkowych]. Problem ten rozwiązało stworzenie modelu myszy apoE–knockout, które rozwijają zmiany miażdżycowe zarówno wczesne, jak i zaawansowane [4, 14, 57, 120, 130]. Wykazano podobieństwo morfologiczne zaawansowanych zmian miażdżycowych u myszy apoE–knockout do zmian u człowieka. Ponadto myszy te rozwijają nadciśnienie tętnicze [34, 46, 92, 141, 211].

Na diecie niskotłuszczowej i niskocholesterolowej u myszy tych surowiczy poziom cholesterolu wynosi około 494 mg/dl, w porównaniu z 60 mg/dl u myszy C57BL/6J. Już w wieku 10 tygodni u myszy apoE – knockout rozwijają się wczesne zmiany miażdżycowe w części aorty w pobliżu zastawek, mieszczącej się w obrębie mięśnia serca, których powierzchnia wynosi około 3157 ± 437 µm², w porównaniu z 0 ± 0 µm² u myszy C57BL/6J. W późniejszym wieku zmiany miażdżycowe są bardziej zaawansowane [140]. Po osiągnięciu 8-9 miesięcy następuje zmienny wzrost wielkości zmian, jak również ich komórkowej złożoności. W zależności od rodzaju eksperymentu autorzy wykorzystują myszy apoE – knockout w wieku od 16 do nawet 60 tygoda życia (zwykle około 24 tygodni) [124, 150].
Stworzenie tego właśnie modelu zmieniło oblicze badań nad patogenezą miażdżycy, umożliwiło między innymi uformowanie nowej definicji miażdżycy jako przewlekłego procesu zapalnego i pozwoliło na przebadanie szeregu leków pod kątem ich ewentualnego działania przeciwmiażdżycowego [24, 55, 56, 88, 91, 131, 172, 189].

Ani hodowle komórkowe, ani badania kliniczne nie pozwalają dokonać wstępnych prób nowych możliwości terapeutycznych leków. Niedawno napisano, że stworzenie myszy z homologiczną wymianą genów („gene-targeted”) było prawdziwym przełomem w eksperymentalnych badaniach podstawowych nad leczeniem miażdżycy [172, 182].
II. CELE PRACY

Celem niniejszej pracy było zbadanie na najnowszym modelu eksperymentalnym miażdżycy - myszy z wyłączonymi genami dla apolipoproteiny E (apoE-knockout mice), pod kątem ewentualnego działania przeciwmiażdżycowego związku AVE 0991 – agonisty receptora Mas dla angiotensyny (1-7). W tym celu zgromadzono pięć grup (grupa kontrolna + 4 grupy z podawanymi lekami) myszy apoE-knockout, po 10 myszy w każdej.

Oprócz AVE 0991, pozostałym grupom myszy podawano: antagonistę receptora Mas – A-779, inhibitor konwertazy angiotensyny – perynopryl oraz inhibitor obojętnej endopeptydazy – tiorfan, celem dokładniejszego zbadania wpływu AT-(1-7) na eksperymentalną miażdżycę.

Z osocza krwi mierzono poziom całkowitego cholesterolu i triglicerydów oraz cholesterolu frakcji LDL i HDL, celem stwierdzenia ewentualnego wpływu podawanych leków na profil lipidów.

Także z osocza mierzono poziom prozapalnych czynników: MCP-1, sVCAM-1, IL-6, IL-12 oraz SAA.

W grupie z podawanym AVE 0991 wykonano również pomiary rozkurczu ringów aortalnych, celem stwierdzenia wpływu leku na ewentualną dysfunkcję śródblónka.
III. MATERIAŁ I METODY

III.1 Zwierzęta i leki

Pięćdziesiąt 8-tygodniowych samic myszy z wyłączonym genem dla apolipoproteiny E (apoE – knockout), o podłożu genetycznym C57BL/6J [199], zakupiono w firmie Taconic (Ejby, Dania) [17, 18]. Zwierzęta te podzielono na pięć grup o liczbie n=10. Myszy były trzymane przez 16 tygodni w Zwierzętarni Katedry Immunologii Wydziału Lekarskiego Collegium Medicum UJ, w cyklu dobowym (12-h ciemność/12-h światła), w klimatyzowanym pomieszczeniu (22.5±0.5°C, wilgotność 50±5%), przy dostępie do wody i pożywienia „chow diet” ad libitum.

Oprócz grupy kontrolnej, grupy eksperymentalne (w każdej n=10) otrzymywały tę samą dietę, zmieszaną z AVE 0991 (dar z firmy Sanofi-Aventis Deutschland GmbH, Frankfurt nad Menem, Niemcy) w dawce 0,58 µmol (0,28 mg)/kg m.c./dzień, z pernydoprylem (Sigma-Aldrich Polska, Poznań) w dawce 0,4 mg/kg m.c./dzień oraz z tiorfanem (Sigma-Aldrich Polska, Poznań) w dawce 2,5 mg/kg m.c./dzień. Leki te zostały zmieszane z dietą „na zimno” fabrycznie przez firmę Ssniff (Soest, Niemcy) [89, 90]. Z kolei A-779 [(D-Alanina⁷)-Angiotensyna (1-7)] (Bachem AG, Bubendorf, Szwajcaria) podawany był w dawce 3,3 mg/kg m.c., 3 razy w tygodniu dootrzewnowo. Dawki leków zostały ustalone na podstawie piśmiennictwa.

III.2 Pobieranie narzędzi

W wieku 6 miesięcy myszy zostały poddane następującej procedurze [87, 134]:

1. Oznaczenie myszy.
2. Zważenie myszy.
3. Wstrzykiwanie dootrzewnowe 1000 IU Fraxiparyny (Sanofi-Synthelabo, Santea, Francja) 10 minut przed znieczuleniem.
4. Eutanazja pod znieczuleniem dootrzewnowym 10 mg Tiopentalu (Sandoz, Wiedeń, Austria), przez dokonanie translokacji rdzenia kręgowego.
5. Rozłożenie za kończyny na deseczce.
6. Polanie 70% alkoholem.
7. Rozcięcie skóry od brucha w górę i otwarcie otrzewnej.
8. Przecięcie opłucnej, okrojenie mostka z dwóch stron i odsunięcie go do góry przez spięcie klemem.
10. Osocze było uzyskiwane przez wirowanie krwi z prędkością 1000×g w 4°C przez 10 minut. Następnie jest ono składowane w plastykowych eppendorfach w –80°C.
11. Nacięcie uszka prawego przediniona. Następnie układ krążenia perfunduje się PBS-em, nakłuwając igłą strzykawki koniuszek lewej komory, utrzymując stałe ciśnienie 100 mm Hg, aż do „zblednięcia” wątroby.
12. Odcięcie mostka i odsłonięcie gracicy, obustronne przecięcie żeber w celu poszerzenia dojścia.

13. Dalsze czynności wykonywane są pod mikroskopem

14. Wycięcie gracicy, aż do odsłonięcia łuku aorty (ryc. 11) i oczyszczenia go in situ.

Ryc. 11. Odsłonięty łuk aorty (z widoczną biało zabarwioną miażdżycą) (powiększenie 3 x).

15. Odsunięcie lewego płuca i serca na bok.

17. Odcięcie aorty piersiowej od kręgosłupa i oczyszczenie jej in situ.

18. Odsłonięcie nerek przez wycięcie jelit i wątroby.

20. Przecięcie przepony i połączenie aorty piersiowej i brzusznej w odcinku okolonerkowym.

22. Odcięcie aorty tuż przy sercu od góry i za rozdwojeniem biodrowym od dołu.

23. Zanurzenie wypreparowanej aorty w 4% roztworze formaldehydu w PBS.

24. Rozcięcie wzdłużne aorty.

25. Rozpięcie aorty na płycie woskowej przy pomocy bardzo cienkich igiełek (ryc. 12).

Ryc. 13. Krojenie poprzeczne serca skalpelem (powiększenie × 3).
Ryc. 14. Schemat krojenia poprzecznego serca myszy skalpelem, przed zatopieniem w OCT (zmodyfikowane z [58]). Płaszczyzna cięcia (niebieska linia) jest lekko przesunięta zgodnie z ruchem wskazówek zegara w stosunku do płaszczyzny, jaką wyznacza odległość 1.5 mm od dolnych krawędzi obu uszek (zielona linia). Jest to spowodowane dążeniem do ustawienia płaszczyzny cięcia jak najbardziej zbliżonej do prostopadłej w stosunku do „korzenia aorty”.

Ryc. 15. Przecięte serce, zanurzone w żelu OCT w plastykowej foremce.
Ryc. 16. Schemat cięcia bloczka OCT z zatopionym sercem myszy w kriostacie (zmodyfikowane z [58]). Strzałka wskazuje kierunek cięcia ostrza kriostatu. Żółta linia wskazuje płaszczyznę dotknięcia pierwszej zastawki („punkt zero”). Na niebiesko zaznaczony jest „korzeń aorty”, czyli początkowa część aorty wstępującej, długości około 1 mm, znajdującej się całkowicie w obrębie mięśnia serca. [Proszę zwrócić uwagę, że „korzeń aorty” jest nachylony pod pewnym kątem do początkowej płaszczyzny cięcia. Aby móc kroić korzeń aorty prostopadle do jego przebiegu, w momencie osiągnięcia żółtej linii należy rozpocząć manipulacje trójwymiarowe ruchomą głowicą kriostatu].

III.3 Oznaczanie wielkości miażdżyicy

A. METODA “CROSS-SECTION”

Przecięte poprzecznie serce i znajdujący się w obrębie mięśnia serca początkowy odcinek aorty wstępującej („korzeń aorty”) zostały umieszczone w specjalnych plastykowych foremkach o wymiarach 15×15×5 mm (CryoMolds) (Tissue-Tek, USA), wypełnionych poprzednio po brzeg żelem mrożeniowym OCT (Optimal Cutting Temperature) (CellPath, Oxford, UK).

Foremki te natychmiast zamrożono do temperatury –80°C. Serca umieszczono w plastikowej foremce tak, aby płaszczyzna cięcia skalpelem dotykała podstawy foremki. Następnie po wyjęciu z zamrażarki, dziesięcio-mikrometrowej grubości skrawki były
cięte w kriostacie, w temperaturze –20°C, przy użyciu standaryzowanego protokołu [89, 90] (ryc.16).

Seryjne skrawki z kriostatu (Leica, Jung CM1800, Niemcy), posiadającego tzw. „ruchomą głowicę” (należną do uzyskania prawidłowego cięcia poprzecznego aorty pod kątem prostym) cięto z proksymalnego, około 1-milimetroowego odcinka aorty wstępującej, zwanej "korzeniem aorty".

Osiem skrawków zbierano w odstępach 100-µm, rozpoczynając od odległości 100-µm od pojawienia się wszystkich trzech płatków zastawki aortalnej według poniższego protokołu:

Sekcja początkowego odcinka aorty ("aortic root") myszy, idąc w górę, aż od poziomu dolnego brzegu zastawek. W momencie dojścia do poziomu początku pierwszej zastawki („punkt zero”), korzystając z ruchomej głowicy, bloczek należy ustawić przestrzennie tak, aby w skrawkach były widoczne równocześnie wszystkie trzy zastawki. Od tego momentu tnie się w górę co 100 µm skrawki o grubości 10 µm, aż do wysokości 800 µm powyżej pierwszej sekcji (ryc. 17-19).

Sekcje te muszą być wykonane w kriostacie, ponieważ krojenie klasyczną metodą parafinową wypłukałoby lipidy, niezbędne do zobrazowania blaszki miażdżycowej [44].
Ryc. 17. Schemat obrazujący trudności związane z uzyskaniem w kriostacie cięcia poprzecznego, prostopadłego do osi aorty (zmodyfikowane z [58]).

Na równo zaznaczone są płatki zastawki aortalnej w przekroju poprzecznym. „Punkt zero” oznacza moment, w którym podczas cięcia w kriostacie uwidacznia się początek pierwszego płatka (proszę porównać z ryc. 18 D).

Aby uzyskać cięcia prostopadłe do osi „korzenia aorty”, należy zmieniać (pod kontrolą skrawków oglądanych w mikroskopie) płaszczyznę cięcia ostrza kriostatu tak, aby stała się „idealną płaszczyzną cięcia” (żółta). Służy temu specjalna procedura („North South West East”) zmiany położenia ruchomej głowicy kriostatu, w zależności od ustawienia przestrzennego uzyskanego „punktu zero” (nie przytaczana w niniejszej pracy dla uproszczenia).
Ryc. 18. Krojenie mięśnia serca w kriostacie, idąc płaszczyzną ostrza kriostatu w górę, w kierunku „korzenia aorty” (zmodyfikowane z [58]).

A. Początek krojenia – na obrazie widoczny sam mięsień serca
(Proszę pamiętać, że w rzeczywistości podczas krojenia skrawków w kriostacie, pokazane poniżej obrazy widoczne pod mikroskopem są bezbarwne).

B. Dalsze krojenie – pojawiają się tzw. „robaczki” („worms”)

C. „Robaczki” zaczynają formować ściany naczyń – aorty i pnia płucnego

D. Aorta. Proszę zwrócić uwagę na (zaznaczony niebieską strzałką) pojawiający się tzw. „punkt zero” na płatku zastawki w dolnej części ryciny. Od tego momentu należy wykorzystać ruchomość głowicy kriostatu i tak nastawić przestrzennie blocek, aby na przekroju były widoczne wszystkie trzy płatki (aby płaszczyzna cięcia była prostopadła do osi długiej „korzenia aorty”).

E. Pierwszy płatek jest wyraźnie widoczny, a pozostałe dwa zaczynają się tworzyć

F. Trzy płatki zastawki aortalnej w pełni widoczne
Ryc. 19. Obraz kolejnych sekcji poprzecznych „korzenia aorty” co 100 μm, licząc od „punktu zero”, w którym podczas cięcia pojawia się pierwszy płatek.

Po utrwaleniu w 4% paraformaldehydzie (pH 7.0), skrawki barwiono hematoksyliną Meyera oraz czerwienią oleistą (oil red-O) (Sigma-Aldrich, St. Louis, MO, USA) według poniższego protokołu:
1. „stock solution”: 0.5-1g oil red - O (czerwień oleista) w 100 ml isopropanolu (propanol 2). Roztwór nasycony.

3. zamrożone sekcje utrwalić w 4% roztworze formaldehydu w PBS (10 minut)

4. przemyć wodą destylowaną

5. zanurzyć w 60% roztworze isopropanolu (1-2 minut)

6. zanurzyć w oil red - O (10-20 minut)

7. przemyć wodą (5 minut)

8. hematoksyлина (15-30 sekund)

9. przemywać w ciepłej wodzie, aż jądra komórkowe staną się niebieskie

10. zamknąć preparat w rozpuszczalnym w wodzie medium

Skrawki zabarwione ORO były analizowane pod mikroskopem Olympus BX50 (Olympus, Tokio, Japonia) i użyte do oceny ilościowej. Obrazy z aorty zbierano przy użyciu aparatu cyfrowego Olympus Camedia 5050 i przechowywano jako pliki TIFF o rozdzielczości 1024×768 pikseli. Całkowita powierzchnia płytki miażdżycowej była mierzona półautomatycznie na każdym szkiełku, przy użyciu programu AnalySIS FIVE software (Soft Imaging System, Munster, Niemcy) (ryc. 29) [5, 31, 45, 125, 145, 180, 181, 188].

Dla każdej myszy średnią wielkość powierzchni miażdżycy obliczano z ośmiu oddalonych od siebie o 100-µm skrawków, co w najdokładniejszy sposób odzwierciedlało powierzchnię przekroju poprzecznego („cross-section”) zajętą przez miażdżycę [127, 128, 132].
Ryc. 20. Komputerowa ocena wielkości miażdżycy w przekroju poprzecznym „korzenia aorty” (z [85]).

B. METODA „EN FACE”

Aorty od łuku do rozdwojenia biodrowego były utrwalane w 4% formaldehydzie, otwierane wzdłużnie, przypięte cienkimi igielkami do czarnych płytek woskowych i zabarwione Sudanem IV (Sigma-Aldrich, St. Louis, MO, USA), według poniższego protokołu:

1. Rozpiąć aortę wyjętą z 4% formaldehydu na płycie przy pomocy bardzo cienkich igiełek (Fine Science Tools, Heidelberg, Niemcy).
2. Przepłukać w 70% etanolu przez 5 minut.
3. Barwić w roztworze roboczym Sudanu IV przez 6 minut.
4. Płukać dwukrotnie w 80% etanolu przez całkowity okres 3 minut.
5. Przechowywać w PBS-ie w lodówce (lub w formaldehydzie w przypadku dłuższego przechowywania).

Powierzchnia zmian miażdżycowych aorty i całkowita powierzchnia aorty były obliczane przy użyciu programu LSM Image Browser software (Zeiss, Jena, Germany) (ryc. 21).
Ryc. 21. Komputerowa ocena procentowej wielkości miażdżycy w przekroju wzdłużnym aorty. A – aorta barwiona Sudanem IV; B – całkowita powierzchnia aorty; C – powierzchnia zmian miażdżycowych (zmodyfikowane z [85]).

C. METODA „ŁUKU AORTY”

Po sfotografowaniu oceniano skrawki pod kątem:
- ilości blaszek miażdżycowych przypadających na skrawek
- stopnia zaawansowania blaszek (na zmiany wczesne i zaawansowane):
1. zmiany wczesne
a) typ I – brak pokrywy włóknistej, tylko widoczne makrofagi
b) typ II – obecna cienka pokrywa włóknista

c) typ III – jak w typie b + infiltracja medii przez komórki naciekowe
d) typ IV – zniszczenie medii [180, 181]

Ryc. 22. Przykładowy łuk aorty z trzema odgałęzieniami wraz z blaszkami miażdżycowymi (barwiony hematoksyliną-eozyną).
pień r-g: pień ramienny-głowowy
tsl: tętnica szyjna lewa
tpl: tętnica podobojczykowa lewa
III.4 Badania immunohistochemiczne

Do wykonania barwień immunohistochemicznych zostały wykorzystane skrawki aorty wstępującej utrwalone w acetonie i wysuszone. Skrawki te były preinkubowane w roztworze 5% nieimmunogennej surowicy koziej z dodatkiem 2% suchego odtłuszczonego mleka w celu wyblokowania niespecyficznego wiązania przeciwciał. Inkubacje z przeciwciałami pierwotnymi przeprowadzano przez noc w temperaturze pokojowej w komorach wilgotnych w następującej kombinacji surowic: skoniugowane z Cy3 przeciwciała mysie przeciwko α-aktynie mięśni gładkich (SMA) (Sigma-Aldrich, St. Louis, MO, USA) [rozcieńcenie 1:600] oraz szczurze przeciwciała przeciwko mysiemu antygenowi CD68 (Serotec, Oxford, UK) [rozc. 1:800].

Po wypłukaniu w buforze PBS zastosowano przeciwciała drugiego rzędu: biotynylowaną kozią surowicę przeciwko szczurzym immunoglobulinom (Jackson IR, West Grove, PA, USA).

Po wypłukaniu, jako ostatni etap reakcji immunohistochemicznej, skrawki inkubowano ze streptawidyną skoniugowaną z fluoresceiną (DTAF) (Jackson IR) [rozc. 1:500]. Skrawki po ostatecznym wypłukaniu zamykano w glicerolu w PBS o pH 8.6 [110, 215].

Skrawki były oceniane przy użyciu epifluorescencyjnego mikroskopu Olympus BX50 (Olympus, Tokyo, Japan), wyposażonego w odpowiednie zestawy filtrów (U-MNG, U-MNIBA), aby uwidocznić odpowiednio czerwoną (Cy3) i zieloną (DTAF) fluorescencję. Obrazy były rejestrowane przy użyciu cyfrowej kamery CCD Olympus DP71.

W każdym skrawku, całkowita powierzchnia zajmowana przez CD68-immunopozytywne makrofagi oraz przez α-aktynę mięśni gładkich była mierzona przy użyciu oprogramowania AnalySIS FIVE (Olympus).
III.5 Badania biochemiczne

Osoczowy poziom rozpuszczalnej frakcji adhezyn komórek naczyń (*soluble vascular cell adhesion molecule-1*) sVCAM-1, interleukiny-6 (IL-6), interleukiny-12 (IL-12) oraz surowiczego amyloidu A (SAA) (wszystkie z R&D Systems, Minneapolis, MN, USA) [35, 148, 175] oraz białka chemotaktycznego dla makrofagów (*macrophage chemotactic protein-1*) MCP-1 (BioSource, Camarillo, CA, USA) [136] oznaczano testem immunoenzymatycznym (ELISA).

III.6 Lipidy osocza

Całkowity surowiczy poziom cholesterolu i trójglicerydów, a także frakcji LDL i HDL cholesterolu, był oznaczany przy użyciu komercyjnie dostępnego zestawu (Roche Molecular Biochemical, Alameda, CA, USA).

III.7 Badanie rozkurczu naczyń

Funkcja śródbłonka naczyniowego oceniana była drogą pomiaru biodostępności tlenku azotu (NO). Biodostępność NO określano przy pomocy analizy zależnych od NO rozkurczów naczyniowych w łaźni narządowej („organ bath”), stymulowanych podawaniem odpowiednich dawek acetylocholiny [72]. Badanie odbywało się przy użyciu multimiografu (Multimyograph model 610 M, Dania). Reakcje naczyniowe rejestrowane były w sposób ciągły na komputerze, dzięki programowi Acqknowledge 3.7.2 (przy pomocy systemu przetwarzania danych BIOPAC Systems, USA).

Naczynia wyizolowane ze zwierząt zostały dokładnie oczyszczone z otaczających tkanek: tłuszczowej i mięśniowej. Następnie zostały podzielone na pierścienie o szerokości 2-3 mm i umieszczone w łaźniach wypełnionych buforem Krebsa - Henseleita (KHB) (120 mM NaCl; 4,7 mM KCl; 1,2 mM MgSO₄; 1,2 mM
KH$_2$PO$_4$; 2,5 mM CaCl$_2$; 25 mM NaHCO$_3$ oraz 5,5 mM glukozy) o temperaturze 37°C. Krążki naczyniowe zostały rozpięte pomiędzy stalowymi czujnikami tensometrów (cztery 5 ml łaźnie naczyniowe wypełnione buforem KH) i poddane stabilizacji przez okres 50-60 min. Pomiary dokonywane były jednocześnie w czterech krążkach naczyniowych – po dwa od każdego zwierzęcia. Uzyskane wyniki były następnie uśredniane.

Wszystkie eksperymenty przeprowadzone były w obecności indometacyny (10 µM). Miało to na celu wyeliminowanie potencjalnego wpływu prostaglandyn (w tym PGI$_2$) na rozkurcze w obrębie naczyń i dawało pewność, iż rozkurcze naczyń są efektem działania NO, a nie prostacykliny.

Po stabilizacji naczynia były pasywnie naprężone do napięcia podstawowego (7 mN dla tętnicy piersiowej wewnętrznej (IMA), pobranej od ludzi w trakcie zabiegów kardiochirurgicznych i 15 mN dla naczyń zwierzęcych) i kilkakrotnie przykurczane przez jednakowe stężenia KCl (90 mM), aż do uzyskania stabilnych odpowiedzi na KCl. Po kilkakrotnym wypłukaniu z KCl naczynia były przykurczane kumulatywnie wzrastającymi dawkami PGF$_{2\alpha}$ (10$^{-9}$ M; 10$^{-8}$ M; 10$^{-7}$ M; 10$^{-6}$ M; 10$^{-5}$ M; 10$^{-4}$ M). Właściwe doświadczenia odbywały się na naczyniach przykurczonych PGF$_{2\alpha}$, w stopniu odpowiadającym 70-80% max. skurczu na PGF$_{2\alpha}$. Na tak przykurczonych naczyniach testowane były odpowiedzi na acetylocholinę (Ach) stosowaną w kumulatywnie wzrastających dawkach.
III.8 Analiza statystyczna

Wyniki zostały wyrażone jako średnia arytmetyczna ± SEM.

W przypadkach występowania rozkładu normalnego parametrów, stosowano najpierw analizę wariancji ANOVA, a następnie test post hoc Duncana.

W obu sytuacjach p<0,05 zostało uznane za statystycznie znamienne.

Obliczenia statystyczne zostały wykonane przy użyciu pakietu statystycznego Statistica 6 dla Windows (StatSoft, TX, USA).
IV. WYNIKI

IV.1 Lipidy

AVE 0991, A-779, peryndopryl oraz tiorfan nie zmieniły znamiennie poziomu cholesterolu i trójglicerydów oraz profilu lipoproteinowego cholesterolu w osoczu badanych myszy (Tabela 1).

Tabela 1. Poziom całkowitego cholesterolu i triglicerydów w osoczu myszy.

<table>
<thead>
<tr>
<th>lek</th>
<th>cholesterol całkowy (mmol/l) ± SEM</th>
<th>HDL-cholesterol (mmol/l) ± SEM</th>
<th>LDL-cholesterol (mmol/l) ± SEM</th>
<th>triglicerydy (mmol/l) ± SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>kontrola</td>
<td>11,57 ± 0,3</td>
<td>2,5 ± 0,2</td>
<td>8,5 ± 0,3</td>
<td>1,2 ± 0,1</td>
</tr>
<tr>
<td>AVE 0991</td>
<td>12,1 ± 0,3 (NS)</td>
<td>2,6 ± 0,25 (NS)</td>
<td>8,8 ± 0,2 (NS)</td>
<td>1,3 ± 0,1 (NS)</td>
</tr>
<tr>
<td>A-779</td>
<td>11,3 ± 0,2 (NS)</td>
<td>2,4 ± 0,1 (NS)</td>
<td>8,75 ± 0,3 (NS)</td>
<td>1,1 ± 0,1 (NS)</td>
</tr>
<tr>
<td>peryndopryl</td>
<td>12,2 ± 0,2 (NS)</td>
<td>2,35 ± 0,3 (NS)</td>
<td>8,3 ± 0,2 (NS)</td>
<td>1,35 ± 0,2 (NS)</td>
</tr>
<tr>
<td>tiorfan</td>
<td>11,4 ± 0,3 (NS)</td>
<td>2,7 ± 0,3 (NS)</td>
<td>8,4 ± 0,3 (NS)</td>
<td>1,15 ± 0,2 (NS)</td>
</tr>
</tbody>
</table>

NS - brak znamiennosci statystycznej w porównaniu z kontrolą

IV.2 Masa myszy

Masa myszy nie różniła się pomiędzy grupami (Tabela 2).

Tabela 2. Masa myszy w badanych grupach.

<table>
<thead>
<tr>
<th>lek</th>
<th>średnia masa ciała (g) ± SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>kontrola</td>
<td>26,2 ± 0,3</td>
</tr>
<tr>
<td>AVE 0991</td>
<td>27,1 ± 0,3 (NS)</td>
</tr>
<tr>
<td>A-779</td>
<td>25,6 ± 0,2 (NS)</td>
</tr>
<tr>
<td>peryndopryl</td>
<td>26,7 ± 0,3 (NS)</td>
</tr>
<tr>
<td>tiorfan</td>
<td>25,9 ± 0,2 (NS)</td>
</tr>
</tbody>
</table>

NS - brak znamiennosci statystycznej w porównaniu z kontrolą
IV.3 Wielkość miażdżycy

Aorty różniły się stopniem miażdżycy pomiędzy grupą kontrolną a grupami, którym podawano leki. Mierzony metodą „en face”, procent całkowitej powierzchni aorty zajętej przez barwione Sudanem IV zmiany wynosił: w grupie kontrolnej 14,6 ± 2,1%, podczas gdy w grupie traktowanej AVE 0991 7,63 ± 1,6%, traktowanej peryndoprylem 2,6 ± 0,5%, w grupie otrzymującej tiorfan 16,7 ± 2,8%, zaś w grupie otrzymującej A-779: 19,2 ± 2,4% (Ryc. 23, 24). Z wyjątkiem tiorfanu, wszystkie te wartości osiągnęły znamienność statystyczną w stosunku do grupy kontrolnej (peryndopryl i AVE 0991 przy spadku, zaś A-779 przy wzroście powierzchni).

„Cross-section” korzeni aorty ujawnił również różnicę w powierzchni zmian miażdżycowych. Liczona w 8 kolejnych skrawkach średnia zmian ± SEM, zajętych przez barwione ORO zmiany wynosiła: 91 416 ± 8 357 µm² w grupie kontrolnej przeciwko 47 235 ± 7 546 µm² w grupie z podawanym AVE 0991, 37 107 ± 2 824 µm² w grupie z podawanym peryndoprylem, 107 599 ± 9 735 µm² w grupie otrzymującej tiorfan, zaś 124 201 ± 10 373 µm² w grupie z podawanym A-779 (n=10) (ryc. 25, 26). Z wyjątkiem tiorfanu, wszystkie te wartości osiągnęły znamienność statystyczną w stosunku do grupy kontrolnej (peryndopryl i AVE 0991 przy spadku, zaś A-779 przy wzroście powierzchni).

Takie same rezultaty otrzymano metodą badania „łuku aorty” (tabela 3, ryc. 27).
Ryc. 23. Barwione Sudanem IV aorty “en face” z grup: kontrolnej i traktowanych lekami myszy apoE - *knockout*.
a- kontrola, b- AVE 0991, c- perynopryl, d- tiorfan, e- A-779
Linia na rysunku „a” obrazuje 1 cm.

<table>
<thead>
<tr>
<th>% powierzchni</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Ryc. 24. Powierzchnia zmian lipidowych w aorcie (wyrażona jako procent powierzchni całej aorty) u myszy apoE - *knockout* kontrolnych i leczonych (n=10 w każdej grupie).
Wyniki są przedstawione jako średnia ± SEM. *p<0.05 w stosunku do grupy kontrolnej
Ryc. 25. Reprezentatywne mikrofotografie, ukazujące barwione czerwienią oleistą (*oil red-O*) zmiany miażdżycowe u myszy apoE - *knockout*, w grupie kontrolnej oraz grupach leczonych (powiększenie × 80).

a- kontrola, b- AVE 0991, c- perynopryl, d- tiorfan, e- A-779

Linia na rysunku „a” obrazuje 500 µm.

Ryc. 26. Wielkość zmian w „korzeniu aorty”, wyrażona w µm², u barwionych ORO 6-miesięcznych myszy apoE - *knockout* kontrolnych i leczonych (n=10 w każdej grupie).

Wyniki są przedstawione jako średnia ± SEM. *p<0.05 w stosunku do grupy kontrolnej.
Ryc. 27. Reprezentatywne łuki aort z myszy apoE-\textit{knockout} (barwienie HE).

a- grupa kontrolna, b- AVE 0991, c- peryndopryl, d- tiorfan, e- A-779

<table>
<thead>
<tr>
<th>grupa (n=10)</th>
<th>średnia ilość blaszek / łuk ± SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>kontrola</td>
<td>6 ± 1 (zmiany wczesne)</td>
</tr>
<tr>
<td>AVE 0991</td>
<td>4 ± 1 (zmiany wczesne) p<0,05</td>
</tr>
<tr>
<td>peryndopryl</td>
<td>3 ± 1 (zmiany wczesne) p<0,05</td>
</tr>
<tr>
<td>tiorfan</td>
<td>7 ± 1 (zmiany wczesne) (NS)</td>
</tr>
<tr>
<td>A-779</td>
<td>9 ± 2 (zmiany wczesne) p<0,05</td>
</tr>
</tbody>
</table>

IV.4 Struktura blaszki i jej stabilność

Badano także zawartość makrofagów, limfocytów T, jak również kolagenu i mięśniówki gładkiej w blaszkach miażdżycowych, jako wskaźniki stabilności blaszki. Stwierdzono, iż zawartość makrofagów (CD68) była obniżona w blaszkach, pochodzących od myszy leczonych AVE 0991 (61% vs. 25%; p<0,05), podczas gdy zawartość komórek mięśni gładkich (α-aktyny) (5% vs. 16%; p<0,05) była zwiększona u leczonych myszy w stosunku do grupy kontrolnej (n=10 w każdej grupie). Podsumowując, blaszki miażdżycowe u myszy traktowanych AVE 0991 były bardziej stabilne niż u myszy kontrolnych (tabela 4, ryc. 28).
Tabela 4. Skład blaszki miażdżycowej w grupie kontrolnej i leczonej AVE 0991.

<table>
<thead>
<tr>
<th>grupa</th>
<th>CD68 ± SEM (% powierzchni)</th>
<th>α-aktyna ± SEM (% powierzchni)</th>
</tr>
</thead>
<tbody>
<tr>
<td>kontrola</td>
<td>61 ± 6</td>
<td>5 ± 2</td>
</tr>
<tr>
<td>leczone AVE 0991</td>
<td>25 ± 4 (p<0,05)</td>
<td>16 ± 3 (p<0,05)</td>
</tr>
</tbody>
</table>

Ryc. 28. Skład blaszki miażdżycowej u 24-tygodniowych myszy, leczonych AVE 0991 (c i d), w porównaniu do grupy kontrolnej (a i b). Reprezentatywne mikrofotografie ukazujące zmiany miażdżycowe u myszy apoE - knockout, w grupie kontrolnej oraz traktowanej AVE 0991. Immunohistochemiczne barwienie na α-aktynę mięśni gładkich (na pomarańczowo) oraz na marker makrofagów CD68 (na zielono) (wszystko w powiększeniu × 80).

a i c – barwienie na CD68
b i d – łączone barwienie na CD68 i α-aktynę
IV. 5 Osoczowe markery zapalenia

Jeśli chodzi o poziomy osoczowe sVCAM-1, to z wyjątkiem peryndoprylu, wartości w żadnej z badanych grup nie różniły się statystycznie znamiennie od grupy kontrolnej (Ryc. 29).

![Diagram](image-url)

Ryc. 29. Poziom sVCAM-1 w osoczu w badanych grupach.
* *p<0,05 w stosunku do grupy kontrolnej

Z kolei poziomy osoczowe MCP-1, IL-6, IL-12 oraz SAA, w grupach leczonych AVE 0991 i peryndoprylem były statystycznie znamiennie niższe od grupy kontrolnej (ryc. 30-33).
Ryc. 30. Poziom MCP-1 w osoczu w badanych grupach.

*p<0,05 w stosunku do grupy kontrolnej

Ryc. 31. Poziom IL-6 w osoczu w badanych grupach.

*p<0,05 w stosunku do grupy kontrolnej
Ryc. 32. Poziom IL-12 w osoczu w badanych grupach.

*p<0,05 w stosunku do grupy kontrolnej

Ryc. 33. Poziom SAA w osoczu w badanych grupach.

*p<0,05 w stosunku do grupy kontrolnej
IV.6 Rozkurcz naczyń

Badając rozkurcz naczyń zależny od tlenku azotu okazało się, że kontrola myszy apoE-\textit{knockout} nie wykazywała cech dysfunkcji śródblonka. Przebieg krzywej dla AVE 0991 był podobny i nie wykazał różnic statystycznie znamiennych od pierwszej krzywej (ryc. 34).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{graph.png}
\caption{NO-zależne izometryczne rozkurcze pierścieni aortalnych myszy apoE –\textit{knockout}, wstępnie przykurczanych PGF$_2\alpha$, jako reakcja na podanie wzrastających stężeń ACh (od 1×10$^{-9}$ do 1×10$^{-5}$ M). Wykres czerwony prezentuje rozkurcze naczyń u myszy apoE –\textit{knockout} leczonych AVE 0991 (n=6), wykres niebieski – rozkurcze u myszy apoE –\textit{knockout} kontrolnych (n=6). Rozkurcze przedstawiono jako % wstępnego skurczu.

Poszczególne punkty wykresu stanowią średni rozkurcz dla danej dawki dla każdego naczynia.}

Ani poziom całkowity osoczowego cholesterolu i trójglicerydów, ani profil lipoproteinowy cholesterolu nie zmieniły się pod wpływem leków. Jest to cenna informacja, gdyż daje ona pewność, iż ewentualne działanie przeciwmiażdżycowe leku nie jest związane z obniżeniem poziomu cholesterolu i trójglicerydów, czy też ze zmianą profilu lipoproteinowego cholesterolu. Także masa myszy nie zmieniła się w
trakcie trwania eksperymentu.

Jeśli chodzi o osoczowe markery zapalenia, to sVCAM-1 było hamowane przez peryndopryl [35], zaś MCP-1, IL-6, IL-12 oraz SAA były hamowane przez peryndopryl jak również AVE 0991 [1, 70]. Jest to zgodne z obserwacją, że AT II jest czynnikiem prozapalnym [60, 123]. Zatem hamowanie powstawania AT II (przez peryndopryl) lub biologiczne przeciwdziałanie efektem działania AT II (przez AVE 0991) zmniejsza odczyn zapalny [71, 80, 114].

Wyniki „organ bath” wykazały brak dysfunkcji śródbłonka u karmionych dietą chow myszy apoE-knockout. Zatem AVE 0991 nie mogło w tym wypadku poprawić działania endotelium. Wynik ten jednak rzuca nowe światło na niejednoznaczne w tej materii piśmiennictwo [66, 211]. Część doniesień bowiem potwierdza brak dysfunkcji śródbłonka u myszy apoE-knockout [12, 96, 201], szczególnie gdy nie są one karmione dietą wysokocholesterolową [46, 51, 52, 93, 106, 107, 184, 210].

Niedawno stwierdzono bezpośrednie, przeciwmiażdżycowe i naczynioprotekcyjne działanie AT-(1-7) na myszach apoE-knockout [190]. W przedstawionym w niniejszej pracy eksperymencie wykazano zaś po raz pierwszy, że niepeptydowy analog AT-(1-7) - AVE 0991, także hamuje aterogenezę na mysim modelu miażdżyce.

Ta obserwacja jest zgodna z generalnym postrzeganiem działania AT-(1-7) jako „anty-AT II” [10]. Ponieważ zaś AT II jest silnym czynnikiem promiażdżycowym, jej funkcjonalny antagonist powinien hamować aterogenezę. Jednakże w tych doświadczeniach nie został dokładnie poznany mechanizm molekularny, poprzez który AVE 0991 działa na rozwój miażdżyce. To zagadnienie niewątpliwie wymagać będzie w przyszłości przeprowadzenia dalszych badań.
AT-(1-7) została odkryta w 1988 roku [159]. Przez długi czas była postrzegana jednak wyłącznie jako nieaktywny produkt osi RAA [68]. Brak zainteresowania AT-(1-7) wynikał też z początkowego braku swoistej dla niej ścieżki enzymatycznej. Wiele enzymów może generować AT-(1-7), zarówno z AT I jak i z AT II – w tym prolyloendopeptydaza [68], obojgłądna endopeptydaza [209], czy też prolylokarboksypeptydaza [204, 205]. Jednakże nieswoistość ich enzymatycznej aktywności nie podtrzymywała tezy o podstawowym znaczeniu AT-(1-7) w układzie RAA. Przełom nastąpił dopiero w 2000 roku, gdy dwie pracujące niezależnie od siebie grupy opisły istnienie homologu ACE, który nazwano ACE2 [16, 50, 194]. Najnowsze badania wskazują także, że AT-(1-7) działa poprzez onkogen Mas jako receptor metabolotropowy, związany z białkiem G [2, 168, 170].

Postrzeganie AT-(1-7) zaczęło się zatem stopniowo zmieniać [8], prowadząc do nowego, obecnego spojrzenia na AT-(1-7) jako aktywnej, istotnej komponenty układu RAA [8, 27, 63, 82, 160-162, 169].

Biorąc pod uwagę obecność dwóch rodzajów ACE oraz dwóch głównych mediatorów: AT II oraz AT-(1-7), zaproponowano ostatnio zupełnie nowe spojrzenie na system RAA [58, 100, 168]. W tej koncepcji w układzie RAA wyodrębniamy dwa przeciwwstawne sobie systemy funkcjonalne, zależne od równowagi ACE / ACE2: ACE – AT II – receptor AT₁ vs ACE2 – AT-(1-7) – receptor Mas (ryc. 35) [83].
AT-(1-7) jest produkowana z AT I lub AT II poprzez ACE2. Ponieważ wydajność katalityczna ACE2 jest w przybliżeniu 400 razy większa z AT II jako substratem niż z AT I, jest to zatem świetny system przeciwregulacyjny przeciwko pobudzeniu osi ACE - AT II - receptor AT₁ [26, 201].

Podczas farmakologicznej blokady receptorów AT₁, zwiększa ilość AT II może mieć działanie korzystne dla organizmu: aktywując receptory typu AT₂ lub przekształcając się w AT-(1-7) [84].

Podawanie inhibitorów konwertazy angiotensyny zwiększa zaś 10-krotnie osoczowe stężenie AT-(1-7), co sugeruje, że część dobroczynnego działania tych leków może być mediowana przez AT-(1-7) [105, 111].

Z kolei ekspresja mRNA kodującego ACE2 wzrasta 5-krotnie przy zastosowaniu ACEI lub lub 3-krotnie przy zastosowaniu blokera receptora angiotensynowego [59]. Niedawno stwierdzono także, że blokada aldosteronu hamuje działanie ACE i aktywuje działanie ACE2 [99].
Zatem stosując dotychczasowe leki wpływające na oś RAA, nie tylko hamujemy produkcję i działanie AT II, ale także pobudzamy „alternatywną”, korzystną drogę (ryc. 36).

Oś ACE2 - AT-(1-7) - receptor Mas może stać się w przyszłości ważnym celem terapeutycznym w chorobach układu sercowo-naczyniowego oraz w chorobach metabolicznych [30, 33, 37, 38, 61, 146, 147, 209]. Nowym wyzwaniem terapeutycznym dla farmakologii staje się zatem stworzenie leków „pobudzających” oś ACE2 - AT-(1-7) – receptor Mas (ryc. 30). Jednym z takich leków mógłby być badany w niniejszej pracy agonista receptora dla AT-(1-7): AVE 0991.

W dotychczasowych badaniach eksperymentalnych nad AVE 0991 stwierdzono,
że działa on kardioprotekcyjnie u szczurów cukrzycowych [54], korzystnie u szczurów w niewydolności serca wywołanej zawaleniem serca [62], zwiększa poziom bradykininy [25] oraz działa na śródbłonek myszy wywołując rozkurcz naczyń. Efekt ten jest z kolei zniesiony u myszy pozbawionych receptora Mas (Mas-knockout) [108].

![Diagram showing the balance between ACE and ACE2](image)

Ryc. 37. Równowaga pomiędzy aktywnością ACE i ACE2 i jej wpływ na rozwój chorób układu sercowo-naczyniowego (zmodyfikowane z [83]).

Z kolei w świetle przedstawionych powyżej badań eksperymentalnych, związek ten hamuje aterogenezę [195]. Daje to obiecujące perspektywy dla ewentualnych, przyszłych badań klinicznych nad tym lekiem.

Byłoby to bowiem działanie farmakologiczne w oparciu o nowy aksjomat, zgodnie z którym nowym celem terapeutycznym jest utrzymanie równowagi, zachwianej przez pobudzenie komponenty: ACE – AT II – receptor AT₁, poprzez działanie pobudzające na komponentę: ACE2 – AT-(1-7) – receptor Mas (ryc. 37).
VI. WNIOSKI

1. Na eksperymentalnym modelu miażdżycy: myszy z wyłączonymi genami dla apolipoproteiny E (apoE–knockout), agonista angiotensyny (1-7) - AVE 0991 hamuje aterogenezę, nie zmieniając przy tym poziomu cholesterolu i triglicerydów oraz profilu lipoproteinowego cholesterolu w osoczu.

2. AVE 0991 zwiększa także stabilność blaszki miażdżycowej.

4. Inhibitor neutralnej endopeptydazy – tiorfan ma tendencję do nasilania aterogenezy, nie osiągając jednak znaczenności statystycznej.

5. Wskazniki zapalne: MCP-1, IL-6, IL-12 oraz SAA są hamowane przez AVE 0991 jak i przez peryndopryl.

6. Pomimo, że myszy apoE-knockout karmione dietą niskocholesterolową nie wykazują dysfunkcji śródbłonka, stanowią jednak doskonały model eksperymentalny do badania wpływu leków na hamowanie miażdżycy.
VII. STRESZCZENIE

Ostatnie badania nad patogenezą miażdżycy wykazały kluczowe znaczenie osi renina-angiotensyna-aldosteron. Angiotensyna II poprzez szereg mechanizmów działa promiażdżycowo. Angiotensyna 1-7 z kolei działa przeciwnie do angiotensyny II, poprzez receptor metabotropowy Mas, związany z białkiem G.

Hipoteza robocza niniejszej pracy zakładała, że związek będący niepeptydowym agonistą angiotensyny 1-7 (AVE 0991) może hamować rozwój zmian miażdżycowych. Badania prowadzone były na najnowszym modelu zwierzęcym miażdżycy: myszach z wyłączonym genem dla apolipoproteiny E (myszy apoE- knockot).

Poddano badaniu pięćdziesiąt samic myszy apoE-knockout w wieku 8 tygodni (podzielonych na grupy o liczbie n=10), o podłożu genetycznym C57BL/6J. Oprócz grupy kontrolnej, grupy eksperymentalne (w każdej n=10) otrzymywały tę samą dietę, zmieszaną z AVE 0991 w dawce 0,58 µmol (0,28 mg)/kg m.c./dzień, z perynodopryłem w dawce 0,4 mg/kg m.c./dzień oraz z tiorfanem w dawce 2,5 mg/kg m.c./dzień. Z kolei A-779 [(D-Alanina)-Angiotensyna (1-7)] podawany był w dawce 3,3 mg/kg m.c., 3 razy w tygodniu dootrzewnowo.

W wieku 6 miesięcy wszystkie myszy poddano eutanazji i pobrano od nich osocze, serca i wypreparowane aorty.

Aorty różniły się stopniem miażdżycy pomiędzy grupą kontrolną a grupami, którym podawano leki. Mierzony metodą “en face”, procent całkowitej powierzchni aorty zajętej przez barwione Sudanem IV zmiany wynosił: w grupie kontrolnej 14,6±2,1%, podczas gdy w grupie traktowanej AVE 0991 7,63±1,6%, traktowanej perynodoprylem 2,6±0,5%, w grupie otrzymującej tiorfan 16,7±2,8%, zaś w grupie otrzymującej A-779 19,2±2,4%. Z wyjątkiem tiorfanu, wszystkie te wartości osiągnęły znaczenie statystyczne w stosunku do grupy kontrolnej (peryndopryl i AVE 0991
przy spadku, zaś A-779 przy wzroście powierzchni).

„Cross-section” korzeni aorty ujawnił również różnicę w powierzchni zmian miażdżycowych. Liczona w 8 kolejnych skrawkach średnia zmian ± SEM, zajętych przez barwione ORO zmiany wynosiła: 91 416±8 357 µm² w grupie kontrolnej przeciwko 47 235±7 546 µm² w grupie z podawanym AVE 0991, 37 107±2 824 µm² w grupie z podawanym peryndoprylem, 107 599± 9 735 µm² w grupie otrzymującej tiorfan, zaś 124 201±10 373 µm² w grupie z podawanym A-779 (n=10).

Z wyjątkiem tiorfaniu, wszystkie te wartości osiągnęły znaczenie statystyczne w stosunku do grupy kontrolnej. Także metoda „łuku aorty” potwierdziła powyższe wyniki.

Podane zwiąki nie zmieniły w sposób statystycznie znamienny profilu lipoproteinowego cholesterolu w osoczu oraz całkowitego poziomu cholesterolu i triglicerydów. Wykazano także, że AVE 0991 zwiększa stabilność płytki miażdżycowej, zmniejszając w niej zawartość makrofagów, a zwiększając zawartość komórek mięśni gładkich.

Wskaźniki zapalenia: MCP-1, IL-6, IL-12 oraz SAA były zmniejszane przez AVE 0991 jak i przez peryndopryl.

Metodą „organ bath” nie wykazano dysfunkcji śródbłonka u badanych myszy.

Niniejsze badanie jest pierwszym na świecie doniesieniem, w którym wykazano na eksperymentalnym modelu zwierzęcym miażdżycy pozytywny efekt farmakologicznego stymulowania receptora dla AT 1-7, na proces aterogenezy.
VII. SUMMARY

In the light of recent findings, renin-angiotensin-aldosterone axis has an important role in atherogenesis. Angiotensin II (AT II) has several potential mechanisms that may increase the atherogenic process. Angiotensin (1-7) [AT-(1-7)] opposes AT II activities. Activities of Ang-(1-7) are mediated via Mas, G-coupled protein receptor.

The working hypothesis was: angiotensin (1-7) agonist, AVE 0991 could ameliorate the development of atherosclerotic lesions. As the experimental research model, genetically changed mice strain of apolipoprotein E (apoE) - knockout mouse (apoE - KO) was used.

50 female 8-week-old apoE–KO mice (in each group n=10) on background C57BL/6J were studied. Experimental groups received the same diet as control, mixed with: AVE 0991 in a dose of 0,58 µmol (0,28 mg)/kg b.w./day, perindopril in a dose of 0,4 mg/kg b.w./day and with tiorphan in a dose of 2,5 mg/kg b.w./day. A-779 [(D-Alanine)-Angiotensin (1-7)] was given in a dose of 3,3 mg/kg b.w, 3 times a week i.p. Cholesterol profile was not changed by the drugs.

Aortas differed in the degree of atherosclerosis between control group and experimental groups. Measured by “en face” method, the percentage of occupied by Sudan IV – stained surfaces were: 14.6±2.1% in control group, whereas in AVE 0991 treated group 7.63±1.6%, in perindopril group 2.6±0.5%, in tiorphan group 16.7±2.8%, and in A-779 group 19.2±0.6%. All the differences, except tiorphan were statistically significant.

„Cross-section” of aortic roots revealed the difference in atherosclerotic lesions. Measured in 8 consecutive sections mean surfaces±SEM, occupied by oil Red - O stained changes were: 91 416±8 357 µm² in control group versus 47 235±7 546 µm² in AVE 0991 – treated group, 37 107±2 824 µm² in perindopril group, 107 599± 9 735
µm² in tiorphan group, and 124.201±10.373 µm² in A-779 group. All the differences, except tiorphan were statistically significant. “Aortic arch” method also confirmed these results.

Finally, it was shown that AVE 0991 may increase plaque stability by decreasing number of macrophages and increasing smooth muscle cells plaque content.

Inflammatory indicators: MCP-1, IL-6, IL-12 and SAA were diminished by AVE 0991 as well as by perindopril.

Organ bath did not show any endothelial dysfunction in experimental mice.

To our knowledge, this is the first report that shows the effect of angiotensin (1-7) receptor agonist: AVE 0991, on atherogenesis in apoE–knockout mice.
VIII. PIŚMIENIĘCTWO

51. d'Uscio LV, Baker TA, Mantilla CB, Smith L, Weiler D, Sieck GC, Katusic ZS.

Nonpeptide AVE 0991 is an angiotensin-(1-7) receptor Mas agonist in the mouse kidney. *Hypertension* 2004; 44: 490-496.

X. SPIS TABEL

Tabela 1. Poziom całkowitego cholesterolu i triglicerydów w osoczu myszy.

Tabela 2. Masa myszy w badanych grupach.

Tabela 3. Zmiany w łukach aorty u myszy apoE-knockout kontrolnych i z podawanymi lekami.

Tabela 4. Skład blaszki miażdżycowej w grupie kontrolnej i leczonej AVE 0991.
XI. SPIS RYCIN

Ryc. 1. „Klasyczne” ujęcie systemu RAA
Ryc. 2. Angiotensyna I.
Ryc. 3. Angiotensyna II.
Ryc. 4. Budowa chemiczna peryndoprylu.
Ryc. 6. Budowa strukturalna AT-(1-7).
Ryc. 7. Działanie AT-(1-7) na narzędzie.
Ryc. 8. Budowa chemiczna AVE 0991.
Ryc. 10. Budowa chemiczna tiorfanu.
Ryc. 11. Odsłonięty łuk aorty.
Ryc. 13. Krojenie poprzeczne serca skalpelem (powiększenie × 3).
Ryc. 14. Schemat krojenia poprzecznego serca myszy skalpelem, przed zatopieniem w OCT.
Ryc. 15. Przecięte serce, zanurzone w żelu OCT w plastikowej foremce.
Ryc. 16. Schemat cięcia bloczka OCT z zatopionym sercem myszy w kriostacie.
Ryc. 17. Schemat obrazujący trudności związane z uzyskaniem w kriostacie cięcia poprzecznego, prostopadłego do osi aorty.
Ryc. 18. Krojenie mięśnia serca w kriostacie, idąc płaszczyzną ostrza kriostatu w góry, w kierunku „korzenia aorty”.
Ryc. 19. Obraz kolejnych sekcji poprzecznych „korzenia aorty” co 100 µm, licząc od „punktu zero”, w którym podczas cięcia pojawia się pierwszy płatek.
Ryc. 20. Komputerowa ocena wielkości miażdżycy w przekroju poprzecznym „korzenia aorty”.

Ryc. 21. Komputerowa ocena procentowej wielkości miażdżycy w przekroju wzdłużnym aorty.

Ryc. 22. Przykładowy łuk aorty z trzema odgałęzieniami wraz z blaszkami miażdżycowymi.

Ryc. 23. Barwione Sudanem IV aorty “en face” z grup: kontrolnej i traktowanych lekami u myszy apoE - knockout.

Ryc. 24. Powierzchnia zmian lipidowych w aorcie (wyrażona jako procent powierzchni całej aorty) u myszy apoE - knock out kontrolnych i leczonych.

Ryc. 25. Reprezentatywne mikrofotografie, ukazujące barwione czerwieni oleistą (oil red-O) zmiany miażdżycowe u myszy apoE - knock out, w grupie kontrolnej oraz grupach leczonych.

Ryc. 26. Wielkość zmian w „korzeniu aorty”, wyrażona w µm², u barwionych ORO 6-miesięcznych myszy apoE - knock out kontrolnych i leczonych.

Ryc. 27. Reprezentatywne łuki aort z myszy apoE-knock out.

Ryc. 28. Skład blaszki miażdżycowej u 24-tygodniowych myszy, leczonych AVE 0991, w porównaniu do grupy kontrolnej.

Ryc. 29. Poziom sVCAM-1 w osoczu w badanych grupach.

Ryc. 30. Poziom MCP-1 w osoczu w badanych grupach.

Ryc. 31. Poziom IL-6 w osoczu w badanych grupach.

Ryc. 32. Poziom IL-12 w osoczu w badanych grupach.

Ryc. 33. Poziom SAA w osoczu w badanych grupach.

Ryc. 34. NO-zależne izometryczne rozkurcze pierścieni aortalnych myszy apoE – knock out, wstępnie przykurczanych PGF₂α, jako reakcja na podanie wzrastających
stężenie ACh.

Ryc. 35. Dwa „przeciwwstawne” systemy w ramach układu RAA.

Ryc. 36. Korzystne „przekierowanie” terapeutyczne osi RAA.

Ryc. 37. Równowaga pomiędzy aktywnością ACE i ACE2 i jej wpływ na rozwój chorób układu sercowo-naczyniowego.